Effects of Resolution of Satellite-Based Rainfall Estimates on Hydrologic Modeling Skill at Different Scales
نویسندگان
چکیده
Uncertainty due to resolution of current satellite-based rainfall products is believed to be an important source of error in applications of hydrologic modeling and forecasting systems. A method to account for the input’s resolution and to accurately evaluate the hydrologic utility of satellite rainfall estimates is devised and analyzed herein. A radar-based Multisensor Precipitation Estimator (MPE) rainfall product (4 km, 1 h) was utilized to assess the impact of resolution of precipitation products on the estimation of rainfall and subsequent simulation of streamflow on a cascade of basins ranging from approximately 500 to 5000 km. MPE data were resampled to match the Tropical Rainfall Measuring Mission’s (TRMM) 3B42RT satellite rainfall product resolution (25 km, 3 h) and compared with its native resolution data to estimate errors in rainfall fields. It was found that resolution degradation considerably modifies the spatial structure of rainfall fields. Additionally, a sensitivity analysis was designed to effectively isolate the error on hydrologic simulations due to rainfall resolution using a distributed hydrologic model. These analyses revealed that resolution degradation introduces a significant amount of error in rainfall fields, which propagated to the streamflow simulations as magnified bias and dampened aggregated error (RMSEs). Furthermore, the scale dependency of errors due to resolution degradation was found to intensify with increasing streamflow magnitudes. The hydrologic model was calibrated with satelliteand original-resolutionMPE using amultiscale approach. The resulting simulations had virtually the same skill, suggesting that the effects of rainfall resolution can be accounted for during calibration of hydrologic models, which was further demonstrated with 3B42RT.
منابع مشابه
Investigating Error Metrics for Satellite Rainfall Data at Hydrologically Relevant Scales
This paper addresses the following open question: What set of error metrics for satellite rainfall data can advance the hydrologic application of new-generation, high-resolution rainfall products over land? The authors’ primary aim is to initiate a framework for building metrics that are mutually interpretable by hydrologists (users) and algorithm developers (data producers) and to provide more...
متن کاملValidation of Satellite Rainfall Products over a Mountainous Watershed in a Humid Subtropical Climate Region of Brazil
Remote sensing allows for the continuous and repetitive measurement of rainfall values. Satellite rainfall products such as Tropical Rainfall Measurement Mission (TRMM) 3B42 and the Hydroestimator (Hydroe) can be potential sources of data for hydrologic applications, mainly in areas with irregular and sparse spatial distributions of traditional rain gauge stations. However, the accuracy of thes...
متن کاملHydrologic Evaluation of Rainfall Estimates from Radar, Satellite, Gauge, and Combinations on Ft. Cobb Basin, Oklahoma
This study evaluates rainfall estimates from the Next Generation Weather Radar (NEXRAD), operational rain gauges, Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) in the context as inputs to a calibrated, distributed hy...
متن کاملA new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa
Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainf...
متن کاملSatellite-based Flood Modeling Using TRMM-based Rainfall Products
Increasingly available and a virtually uninterrupted supply of satellite-estimatedrainfall data is gradually becoming a cost-effective source of input for flood predictionunder a variety of circumstances. However, most real-time and quasi-global satelliterainfall products are currently available at spatial scales ranging from 0.25o to 0.50o andhence, are considered somewhat coarse for dynamic h...
متن کامل